Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

The structures of the *a*-alums RbCr(SO₄)₂·12H₂O and CsCr(SeO₄)₂·-12H₂O at 293 and 12 K

Brian N. Figgis,^a* Philip A. Reynolds^b and Alexandre N. Sobolev^a

^aChemistry Department, University of Western Australia, Nedlands, WA 6907, Australia, and ^bResearch School of Chemistry, Australian National University, Canberra, ACT 0200, Australia Correspondence e-mail: bnf@crystal.uwa.edu.au

Received 6 December 1999 Accepted 2 April 2000

The crystal structures of the α -alums rubidium chromium bis(sulfate) dodecahydrate, RbCr(SO₄)₂·12H₂O, and caesium chromium bis[tetraoxoselenate(VI)] dodecahydrate, CsCr-(SeO₄)₂·12H₂O, have been determined by X-ray diffraction at 293 and 12 K. The metal atoms lie on $\overline{3}$ sites and the anions lie on threefold rotation axes. The accurate and extensive data sets lead to much more precise determinations than are available from earlier work, particularly at 12 K. The changes in the atomic displacement parameters between 293 and 12 K correspond to the respective predominances of intermolecular and intramolecular vibrational effects.

Comment

The alums $M^{I}M^{III}(XO_4)_2$ ·12H₂O, like Elpasolites and Tutton salts, have played a significant role in research in physics and chemistry. In particular, the systems have been invaluable for examination of metal ions in various well defined site symmetries in native and doped single crystals.

There are many previous structural studies of alums by X-ray diffraction at room temperature. They adopt the space group $Pa\overline{3}$ and occur in α , β and γ forms. RbCr(SO₄)₂·12H₂O has been studied only by film methods (Ledsham & Steeple, 1969) and CsCr(SeO₄)₂·12H₂O somewhat more accurately (Armstrong *et al.*, 1990). In these two studies, the *X*-O and *M*-O bond length s.u.'s vary in the range 0.003–0.006 Å. Lower temperatures are of considerable interest to spectroscopic studies such as those of Tregenna-Piggott & Best (1996) and Tregenna-Piggott *et al.* (1997), and some others we have in hand, and serve to improve the accuracy of the structural determination.

There have been a number of neutron diffraction studies of both α - and β -alums at 15 K which show no abnormal behaviour or phase change resulting from the lowering in temperature. There is increased accuracy, not only in hydrogen, but also non-hydrogen, parameters compared to room-temperature X-ray studies (Best & Forsyth, 1990*a*,*b*, 1991; Best *et al.*, 1993).

We have determined the crystal structures of two α -alums of interest by X-ray diffraction at 293 and 12 K. The results illustrate the much improved accuracy, involving a factor mostly much greater than two in s.u.'s for non-H atoms which result from the lower temperature of the measurements. The crystal geometries are all typical of alums. The angle between the Cr–O bond and the unit-cell axis varies from 4.6 to 6.1°, the O11– M^{I} –O11′ angle varies from 65.7 to 66.2°, and the water molecules are twisted well out of the CrO₄ planes by an average value of 21 (3)° (Figs. 1*a* and 1*b*). These are distinct from the angles near 0 and 60° observed for β -alums (Beattie *et al.*, 1981).

The Cr–O bond lengths we observe apparently lengthen, due to reduced libration, from 1.960 (2) to 1.966 (1) Å as we lower the temperature from 293 to 12 K. This length agrees with that in the neutron determination of $CsCr(SO_4)_2$ ·12H₂O of 1.961 (2) Å (Best & Forsyth, 1990b). Of the alums measured at low temperatures, the distortions of the CrO₆ fragments from octahedral stereochemistry that we observe in our compounds at 12 K are greater than the average observed by neutron diffraction.

The atomic displacement parameters at 12 K (Fig. 1*b*) show no evidence of intermolecular effects. It is well known that zero-point motion, such as we are seeing here, is dominated by intramolecular vibrational modes (Willis & Pryor, 1975). Thus, we can make the following predictions: (i) for Cr, S or Se, and Rb or Cs we should see relatively small (0.006–0.008 Å²) and isotropic displacement ellipsoids; (ii) the O principal axes should be aligned with local bonding symmetry; (iii) terminal atoms (O1–O2) should be relatively isotropic perpendicular to the bond, and because of the relative frequencies of bond stretching and bending, motion perpendicular to the bond

Figure 1

Environments of the atoms in (a) RbCr(SO₄)₂·12H₂O at 293 K and (b) CsCr(SeO₄)₂·12H₂O at 12 K. Displacement ellipsoids are shown at the 50% probability level.

inorganic compounds

should exceed that parallel to it; (iv) the O12 displacement out of the approximate $Cr-OH_2$ plane should be larger than the plane motion. All these predictions are borne out by experiment. Since these motions are so small, this is an excellent internal test of the reliability of the measured diffraction intensities and their interpretation. We note that these requirements are more stringent than the bond rigidity tests that are commonly used at higher temperatures. The thermal motion at 293 K is greatly increased from 12 K (Fig. 1a).

Experimental

Single crystals of the alums were obtained by recrystallization from aqueous solutions.

Cell parameters from 14

 $0.462 \times 0.458 \times 0.443 \text{ mm}$

reflections

 $\theta = 16.88 - 17.56^{\circ}$

 $\mu = 3.531 \text{ mm}^{-1}$

T = 293 (2) K

Cube, pink

 $R_{\rm int} = 0.027$

 $\theta_{\rm max} = 25.01^{\circ}$

 $h=0\rightarrow 14$

 $k=0\to 14$

 $l = -14 \rightarrow 0$

3 standard reflections

every 100 reflections

intensity decay: 0.5%

RbCr(SO₄)₂·12H₂O at 293 K

Crystal data

RbCr(SO₄)₂·12H₂O $M_r = 545.78$ Cubic, Pa3 a = 12.296 (2) ÅV = 1859.1 (5) Å³ Z = 4 $D_x = 1.950 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

Data collection

Huber 512 goniometer diffractometer ω -2 θ scans Absorption correction: Gaussian (Xtal3.4; Hall et al., 1994) $T_{\rm min}=0.360,\ T_{\rm max}=0.420$ 1655 measured reflections 557 independent reflections 444 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °) for RbCr(SO₄)₂·12H₂O at 293 K.

Rb-O11	3.082 (3)	S1-O1	1.442 (6)
Rb-O2	3.739 (4)	S1-O2	1.465 (3)
Cr-O12	1.960 (2)		
O11-Rb-O11 ⁱ	65.68 (4)	O12-Cr-O12 ⁱⁱⁱ	89.13 (10)
O11-Rb-O11 ⁱⁱ	114.32 (4)	O12-Cr-O12 ⁱⁱ	90.87 (10)
O11-Rb-O2	61.17 (7)	O1-S1-O2	109.97 (15)
O2-Rb-O2 ⁱⁱ	37.21 (7)	$O2 - S1 - O2^{ii}$	108.96 (15)

Symmetry codes: (i) -z, -x, -y; (ii) z, x, y; (iii) 1 - z, 1 - x, 1 - y.

Table 2	
Hydrogen-bonding geometry (Å, °) for RbCr(SO ₄) ₂ ·12H ₂ O at 293 k	ζ.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O11-H1···O1 ⁱ	0.813 (10)	2.011 (12)	2.821 (4)	175 (4)
$O11-H2\cdots O2^{ii}$	0.814 (10)	1.956 (14)	2.763 (4)	171 (5)
O12−H3···O2 ⁱⁱⁱ	0.822 (10)	1.800 (11)	2.621 (4)	178 (5)
$O12-H4\cdots O11^{iv}$	0.820 (10)	1.803 (12)	2.620 (4)	174 (4)
Symmetry codes: (i)	$r = \frac{1}{2} v \frac{1}{2} = z^{2}$	(ii) $v = \frac{1}{2} \frac{1}{2} - z$	$-r$: (iii) $z^{\frac{1}{2}}$	$-r^{1} + v$ (iv)

odes: (i) $x - \frac{1}{2}, y, \frac{1}{2} - z$; (ii) $y - \frac{1}{2}, \frac{1}{2} - z, -x$; (iii) $z, \frac{1}{2} - x, \frac{1}{2} + y$; (iv) $y, \frac{1}{2} - z, \frac{1}{2} + x.$

Refinement

```
Refinement on F^2
R[F^2 > 2\sigma(F^2)] = 0.032
wR(F^2) = 0.080
S=1.046
557 reflections
55 parameters
All H-atom parameters refined
```

 $w = 1/[\sigma^2(F_o^2) + (0.0299P)^2]$ + 4.4211*P*] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.0249 (15)

$RbCr(SO_4)_2 \cdot 12H_2O$ at 12 K

Crystal data

а

$RbCr(SO_4)_2 \cdot 12H_2O$	
$M_r = 545.78$	
Cubic, Pa3	
a = 12.241 (2) Å	
V = 1834.2 (5) Å ³	
Z = 4	
$D_x = 1.976 \text{ Mg m}^{-3}$	
Mo Ka radiation	

Data collection

Huber 512 goniometer diffract-	R
ometer	$\theta_{\mathbf{I}}$
ω –2 θ scans	h
Absorption correction: Gaussian	k
(Xtal3.4; Hall et al., 1994)	l
$T_{\min} = 0.340, \ T_{\max} = 0.403$	3
4175 measured reflections	
905 independent reflections	
812 reflections with $I > 2\sigma(I)$	

Cell parameters from 14 reflections $\theta=16.88{-}17.56^\circ$ $\mu = 3.578 \text{ mm}^{-1}$ T = 12(2) KCube, pink $0.462 \times 0.458 \times 0.443 \text{ mm}$

 $R_{int} = 0.019$ $max = 30.02^{\circ}$ $= -7 \rightarrow 17$ $= -7 \rightarrow 17$ $= -7 \rightarrow 17$ standard reflections every 100 reflections intensity decay: 0.5%

Table 3

Selected geometric parameters (Å, $^{\circ}$) for RbCr(SO₄)₂·12H₂O at 12 K.

Rb-O11	3.039(1)	S1-O1	1.479 (2)
Rb-O2	3.704 (1)	S1-O2	1.4798 (9)
Cr-O12	1.965 (1)		
O11-Rb-O11 ⁱ	65.798 (15)	O12-Cr-O12 ⁱⁱⁱ	88.78 (4)
O11-Rb-O11 ⁱⁱ	114.202 (15)	O12-Cr-O12 ⁱⁱ	91.22 (4)
O11-Rb-O2	60.15 (2)	O1-S1-O2	109.77 (4)
O2-Rb-O2 ⁱⁱ	38.00 (2)	$O1 - S1 - O2^{ii}$	109.77 (4)
Summature and and (i)		· (;;;) 1 = 1 = 1 = 1	

Symmetry codes: (i) -z, -x, -y; (ii) z, x, y; (iii) 1 - z, 1 - x, 1 - y.

Table	4
-------	---

Hydrogen-bonding geometry (Å, °) for RbCr(SO₄)₂·12H₂O at 12 K.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
O11−H1···O1 ⁱ	0.78 (3)	2.04 (3)	2.7933 (15)	162 (2)
$O11-H2\cdots O2^{ii}$	0.76 (2)	2.02 (2)	2.7541 (15)	166 (2)
O12−H3···O2 ⁱⁱⁱ	0.81 (3)	1.83 (3)	2.6321 (14)	171 (2)
$O12-H4\cdots O11^{iv}$	0.83 (3)	1.79 (3)	2.6087 (14)	171 (3)

Symmetry codes: (i) $x - \frac{1}{2}, y, \frac{1}{2} - z$; (ii) $y - \frac{1}{2}, \frac{1}{2} - z, -x$; (iii) $z, \frac{1}{2} - x, \frac{1}{2} + y$; (iv) $y, \frac{1}{2} - z, \frac{1}{2} + x.$

 $R_{\rm int}=0.033$ $\theta_{\rm max} = 29.98^{\circ}$

 $h=-7\rightarrow 17$

 $k = -7 \rightarrow 17$ $l = -7 \rightarrow 17$

3 standard reflections

every 100 reflections

intensity decay: 0.5%

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.045$ S = 1.094905 reflections 55 parameters All H-atom parameters refined

CsCr(SeO₄)₂·12H₂O at 293 K

Crystal data

CsCr(SeO₄)₂·12H₂O $M_r = 687.02$ Cubic, $Pa\overline{3}$ a = 12.585(1) Å V = 1993.2 (3) Å³ Z = 4 $D_x = 2.289 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation

Data collection

Huber 512 goniometer diffractometer ω -2 θ scans Absorption correction: Gaussian (Xtal3.4; Hall et al., 1994) $T_{\min} = 0.138, T_{\max} = 0.189$ 1751 measured reflections 589 independent reflections 549 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.020$ wR(F²) = 0.044 S = 1.259589 reflections 55 parameters All H-atom parameters refined

Cell parameters from 14 reflections $\theta = 16.40 - 17.06^{\circ}$ $\mu = 6.110 \text{ mm}^{-1}$ T = 293 (2) KPrism, dark violet $0.65 \times 0.64 \times 0.63 \mbox{ mm}$

 $w = 1/[\sigma^2(F_o^2) + (0.0167P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: SHELXL97

Extinction coefficient: 0.0119 (4)

+ 1.4261P]

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$

(Sheldrick, 1997)

 $R_{\rm int} = 0.020$ $\theta_{\rm max} = 25.00^\circ$ $h = 0 \rightarrow 14$ $k = 0 \rightarrow 14$ $l = -14 \rightarrow 0$ 3 standard reflections every 100 reflections intensity decay: 0.5%

 $w = 1/[\sigma^2(F_o^2) + (0.0194P)^2]$ + 0.7907P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.0166 (6)

Table 5 Selected geometric parameters (Å, °) for CsCr(SeO₄)₂·12H₂O at 293 K.

Cs-O11	3.232 (2)	Se-O1	1.627 (4)
Cs-O2	3.782 (2)	Se-O2	1.634 (2)
Cr-O12	1.963 (2)		
$O11-Cs-O11^i$	66.16 (3)	O12-Cr-O12 ⁱⁱⁱ	89.13 (8)
O11-Cs-O11 ⁱⁱ	113.84 (3)	O12-Cr-O12 ⁱⁱ	90.87 (8)
O11-Cs-O2	59.79 (5)	O1-Se-O2	110.16 (8)
O2-Cs-O2 ⁱⁱ	41.13 (5)	O2-Se-O2 ⁱⁱ	108.77 (8)

Symmetry codes: (i) -z, -x, -y; (ii) z, x, y; (iii) 1 - z, 1 - x, 1 - y.

Table 6

Hydrogen-bonding geometry (Å, °) for CsCr(SeO₄)₂·12H₂O at 293 K.

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O11-H1\cdots O1^{i}$	0.811 (10)	2.018 (14)	2.811 (3)	166 (4)
$O11 - H2 \cdot \cdot \cdot O2^{ii}$	0.815 (10)	1.949 (14)	2.753 (3)	169 (4)
$O12-H3 \cdot \cdot \cdot O2^{iii}$	0.817 (10)	1.821 (11)	2.635 (3)	175 (3)
$O12-H4\cdots O11^{iv}$	0.822 (10)	1.803 (12)	2.620 (3)	173 (4)
Symmetry codes: (i	$x - \frac{1}{2} v \frac{1}{2} - z$	(ii) $v = \frac{1}{2} \frac{1}{2} - z$	$-r$: (iii) $z^{\frac{1}{2}}$	$-x^{1} + y$ (iv)

 $y, \frac{1}{2} - z, \frac{1}{2} + x.$

Table 7

Selected geometric parameters (Å, °) for CsCr(SeO₄)₂·12H₂O at 12 K.

Cs-011	3.202 (2)	Se-O1	1.641 (2)
Cs-O2	3.729 (2)	Se-O2	1.642 (1)
Cr-O12	1.966 (1)		
O11-Cs-O11 ⁱ	66.18 (2)	O12-Cr-O12 ⁱⁱⁱ	88.97 (5)
O11-Cs-O11 ⁱⁱ	113.82 (2)	O12-Cr-O12 ⁱⁱ	91.03 (5)
O11-Cs-O2	58.92 (3)	O1-Se-O2	110.10 (5)
O2-Cs-O2 ⁱⁱ	41.98 (3)	$O1-Se-O2^{ii}$	110.10 (5)

Symmetry codes: (i) -z, -x, -y; (ii) z, x, y; (iii) 1 - z, 1 - x, 1 - y.

CsCr(SeO₄)₂·12H₂O at 12 K

Crystal data	
CsCr(SeO ₄) ₂ ·12H ₂ O $M_r = 687.02$ Cubic, $Pa\bar{3}$ a = 12.522 (3) Å V = 1963.5 (8) Å ³ Z = 4 $D_x = 2.324$ Mg m ⁻³ Mo K α radiation	Cell parameters from 14 reflections $\theta = 16.47-17.15^{\circ}$ $\mu = 6.202 \text{ mm}^{-1}$ T = 12 (2) K Prism, dark violet $0.65 \times 0.64 \times 0.63 \text{ mm}$

Data collection

Huber 512 goniometer diffractometer $\omega - 2\theta$ scans Absorption correction: Gaussian (Xtal3.4; Hall et al., 1994) $T_{\min} = 0.132, T_{\max} = 0.188$ 4443 measured reflections 963 independent reflections 916 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0122P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.019$	+ 2.1334 <i>P</i>]
$wR(F^2) = 0.042$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.309	$(\Delta/\sigma)_{\rm max} = 0.001$
963 reflections	$\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm A}^{-3}$
55 parameters	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	(Sheldrick, 1997)
refinement	Extinction coefficient: 0.0092 (3)

Table 8

Hydrogen-bonding geometry (Å, °) for CsCr(SeO₄)₂·12H₂O at 12 K.

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O11-H1···O1 ⁱ	0.849 (10)	1.99 (2)	2.796 (2)	158 (4)
$O11-H2\cdots O2^{ii}$	0.844 (10)	1.910 (12)	2.740 (2)	167 (3)
O12−H3···O2 ⁱⁱⁱ	0.844 (10)	1.804 (11)	2.641 (2)	171 (3)
$O12-H4\cdots O11^{iv}$	0.849 (10)	1.761 (10)	2.609 (2)	176 (3)
Symmetry codes: (i)	$x - \frac{1}{2}, y, \frac{1}{2} - z;$	(ii) $y = \frac{1}{2}, \frac{1}{2} = z$,	$-x$; (iii) $z, \frac{1}{2}$	$-x, \frac{1}{2} + y;$ (iv)

 $y, \frac{1}{2} - z, \frac{1}{2} + x.$

The room temperature and very low temperature data sets were collected on a locally assembled Huber 512 goniometer equipped with a Displex 202D cryogenic refrigerator (Henriksen et al., 1986; Larsen, 1995). The temperature evolution of thermal motion is illustrated for the hexaaquachromium(III) and selenate molecular ions $CsCr(SeO_4)_2$ ·12H₂O in Fig. 1. The correction for the absorption by the beryllium shield was performed using the program PROFIT (Streltsov & Zavodnik, 1989).

inorganic compounds

For both compounds, data collection: local diffractometer control software; cell refinement: local diffractometer control software; data reduction: *PROFIT* (Streltsov & Zavodnik, 1989); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1983); software used to prepare material for publication: *SHELXTL*.

The authors thank Dr L. Dubicki of the Australian National University for providing the crystals of the alums. BNF and ANS are grateful to the Australian Research Council for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1280). Services for accessing these data are described at the back of the journal.

References

Armstrong, R. S., Beattie, J. K., Best, S. P., Braithwaite, G. P., Del Favero, P., Skelton, B. W. & White, A. H. (1990). Aust. J. Chem. 43, 393–398. Beattie, J. K., Best, S. P., Skelton, B. W. & White, A. H. (1981). J. Chem. Soc. Dalton Trans. pp. 2105–2111.

Best, S. P. & Forsyth, J. B. (1990a). J. Chem. Soc. Dalton Trans. pp. 395-400.

Best, S. P. & Forsyth, J. B. (1990b). J. Chem. Soc. Dalton Trans. pp. 3507-3511.

Best, S. P. & Forsyth, J. B. (1991). J. Chem. Soc. Dalton Trans. pp. 1721-1725.

Best, S. P., Forsyth, J. B. & Tregenna-Piggott, P. L. (1993). J. Chem. Soc. Dalton Trans. pp. 2711–2715.

Hall, S. R., King, G. S. D. & Stewart, J. M. (1994). Editors. *Xtal3.4 User's Manual*. Universities of Western Australia, Australia, and Maryland, USA.

Henriksen, K., Larsen, F. K. & Rasmussen, S. E. (1986). J. Appl. Cryst. 19, 390–394.

Larsen, F. K. (1995). Acta Cryst. B51, 468-482.

Ledsham, A. H. C. & Steeple, H. (1969). Acta Cryst. B25, 398-400.

Sheldrick, G. M. (1983). SHELXTL User's Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Streltsov, V. A. & Zavodnik, V. E. (1989). Sov. Phys. Crystallogr. 34, 824-828.

Tregenna-Piggott, P. L.W. & Best, S. P. (1996). Inorg. Chem. 35, 5730-5736.

Tregenna-Piggott, P. L.W., Best, S. P., O'Brien, M. C. M., Knight, K. S., Forsyth, J. B. & Pilbrow, J. R. (1997). J. Am. Chem. Soc. 119, 3324–3332.

Willis, B. T. M. & Pryor, A. W. (1975). In *Thermal Vibrations in Crystallography*. Cambridge University Press.